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Abstract 

The churning mode can arise in a toroidally-symmetric plasma where it causes convection in the 

vicinity of the poloidal field null [D.D. Ryutov, R.H. Cohen, T.D. Rognlien, M.V. Umansky, 

“Favorable effects of turbulent plasma mixing on the performance of innovative tokamak 

divertors,” BAPS 58, #16, p. 394.]. The mode is driven by the toroidal curvature coupled with a 

pressure gradient. The toroidal equilibrium conditions cannot be easily satisfied in the virtual 

absence of the poloidal field (PF) – whence the onset of this mode, which “churns” the plasma 

around the poloidal field null without perturbing the strong toroidal field. We find the conditions 

under which this mode can be excited in magnetic configurations with first-, second-, and third-

order PF nulls (i.e., in the geometry of standard, snowflake and cloverleaf divertors). The size of 

the affected zone in second- and third-order-null divertors is much larger than in a standard 

divertor. The proposed phenomenological theory allows one to evaluate observable 

characteristics of the mode, in particular the frequency and amplitude of the poloidal field 

perturbations. The mode spreads the tokamak heat exhaust between multiple divertor legs and 

may lead to a broadening of the plasma width in each leg. The mode causes much more intense 

convection in the poloidal plane than the classical plasma drifts. 

Keywords: tokamak, divertor, convection, turbulence 
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 1. Introduction  

 An area of a weak poloidal magnetic field near the null-point of a tokamak 

divertor possesses interesting equilibrium and stability properties that may significantly 

affect the divertor performance. It is well known that in the absence of a poloidal field, 

equilibria in axisymmetric toroidal fields are possible only for trivial pressure 

distributions, where the pressure is constant on surfaces of nested cylinders with an axis 

coinciding with the geometrical axis of a tokamak (e.g., [1]). However, such equilibria 

are incompatible with the pressure distributions in the divertor area, where the pressure 

varies roughly in the direction parallel to the geometrical axis, from the higher pressure in 

the plasma confinement zone to the lower pressure towards the divertor targets (Fig. 1).  

 It was conjectured in Refs. 2-4 that the loss of plasma equilibrium near the 

poloidal field null may lead to the onset of plasma convection that spreads the heat flux 

over the whole zone of a weak poloidal field; the plasma then enters a stronger poloidal 

field in the divertor legs and flows to the divertor targets. A strong plasma convection 

near the null means that, in the case of divertors with 4 or 6 divertor legs, like the 

snowflake and cloverleaf, respectively, the plasma fills all of them, leading to increase of 

a number of strike points from 2 to 4 or 6. In addition, broadening of the plasma 

distribution in each of the legs may occur. 

A mode that we consider here is a large-scale mode of sheared poloidal rotation around 

the null that brings the hotter plasma adjacent to the confinement zone in the downward 

direction, thereby allowing for the plasma to flow into additional divertor legs (Fig. 1). 

The free energy for this convection mode comes from the vertical pressure gradient that 

is sustained by the heating of the plasma in the upper confinement zone and its cooling 
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(by the heat flow to the divertor targets) from the bottom. This mode is toroidally-

symmetric and does not perturb the toroidal magnetic field, similar to what was assumed 

in Refs. 5 and 6. It causes poloidal rotation of the whole toroidal flux tube around the null 

point where the poloidal field is weak. We call this (nonlinear) convective motion the 

“churning mode.” 

 

 
 
Fig. 1 The geometry of the system for the case of a snowflake divertor: a) the overall 
configuration; b) The structure of the weak poloidal field zone near the null; dashed red 
circle encloses the convection zone with blue dashed arrow indicating the initial direction 
of rotation; solid red line inside the confinement zone shows the area inside the separatrix 
affected by convection; in the equatorial plane this layer becomes quite narrow, see 
discussion around Eq. (29). 
 

 In this note we add a quantitative element to a heuristic assessment of the 

convection problem presented in Refs. 3-5. A discussion outlined below is still partially 

heuristic, not providing a full self-consistent picture of the plasma convection, but several 

significant elements of the problem are analyzed quantitatively, allowing one to make 

more reliable predictions regarding the onset and intensity of the churning mode 

convection. 

 Note that enhanced plasma transport near the PF null can also appear as a result of 

instabilities of the plasma equilibrium in the cases where such an equilibrium exists. This 
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side of the problem was briefly discussed in Ref. [5]. A detailed analysis of the flute-like 

mode (that does not perturb the toroidal field but does perturb the poloidal field) was 

presented in Ref. [6]. A small-scale ballooning mode may exist on the field lines that 

make many toroidal revolutions before leaving the weak poloidal field zone [7]. Refs. 6, 

7 contain estimates of the critical beta leading to the excitation of these modes.   

 The plasma poloidal convection near the null can also be driven by an equilibrium 

electric field normal to poloidal flux surfaces. This mechanism has been analyzed in Ref. 

8 for a standard divertor and in Ref. 9 for the snowflake divertor.  

 The “activation” of additional divertor legs has been observed experimentally in 

all three tokamaks (TCV, NSTX and DIII-D) where a snowflake divertor configuration 

has been studied [10-14] The effect was strongest during the ELM events [10-14]. 

Numerical simulations of the plasma transport of the snowflake divertor using the EMC3 

code [15] indicate that, in order to reach at least qualitative agreement with experimental 

results of the TCV facility, one needs to increase the transport near the null by orders of 

magnitude compared to the “normal” transport typically assumed in scrape-off layer 

(SOL) simulations (a sizable fraction of Bohm transport). These facts serve as strong 

motivation for looking for new transport mechanisms near the poloidal field null.  

 In numerical estimates throughout the paper we will use a set of parameters for 

some generic mid-size tokamak (Table 1). The zone near the poloidal field null is not 

very amenable to direct measurements, and it is probably premature to make direct 

application of our results to specific devices. Still, our estimates for a generic case  may 

help to guide a discussion of specific experiments.  
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Table 1. Parameters of a generic mid-size tokamak used in the numerical estimates 
 
Parameter Major 

radius 
Minor 
radius 

Toroidal 
field 

Midplane 
poloidal 

field (PF) 

Plasma 
dens.in 

conv. zone 

Plasma 
temp.in 

conv. zone 
 

Notation 
 

 
R, cm 

 
a, cm 

 
BT, T 

 
Bpm, T 

 
n, cm-3 

 
T, eV 

 
Value 

 

 
150 

 
60 

 
2 

 
0.25 

 
1013 

 
50 

 

 The further presentation is organized as follows. In Sec. 2 we introduce notation 

and present expressions for the poloidal magnetic field for the three configurations 

(standard, snowflake and cloverleaf). In Sec. 3 we describe the general structure of the 

churning mode. In Sec. 4 we evaluate the thermal energy release by a plasma poloidal 

rotation around the poloidal field null-point. The condition that a strong toroidal field is 

not perturbed makes the energy release proportional to the toroidal curvature.  In Sec. 5 

we evaluate the perturbation of the poloidal field magnetic energy assuming infinite 

plasma electrical conductivity (a condition that typically reflects the real situation quite 

well).  In Sec. 6, we compare the two energies and, based on that, evaluate the size of the 

convection zone for various magnetic configurations. Section 7 contains evaluation of the 

dynamic characteristics of the mode, in particular, its turn-over time. Finally, Sec. 8 

contains a summary and outlook.  

 2. The magnetic geometry 

 The magnetic field structure for a snowflake divertor is illustrated in Fig. 1a. The 

geometric axis is the dash-dotted line to the left; the major radius corresponding to the 

null point is RD. We use Cartesian coordinates (x,y) in the poloidal plane, with the axis x 

collinear to the major radius.  Alternatively, a polar system (r,ϕ) is used with the angle ϕ 
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measured counter-clockwise from the x axis.  We consider the vicinity of the null point, 

therefore assuming r<<RD. An expanded view of the zone near the null is shown in Fig. 

1b, where not only the anticipated convection zone is shown, but also a SOL and four 

outgoing divertor legs. On average, there is certainly a plasma pressure gradient in this 

area, with a higher pressure above the null and lower pressure below the null. The 

magnitude of this gradient defines the size of the zone where the churning mode can be 

active. In the absence of such a gradient, the drive for the churning mode would not be 

present  

 Although in Fig. 1a we have shown field lines of the poloidal magnetic field in 

the whole domain, including the immediate vicinity of the null, the poloidal field 

throughout this region is weak. We shall find the size of the zone where the field is so 

weak that the plasma equilibrium loses any semblance of the initial hexagonal separatrix 

structure. 

 The toroidal field is assumed so strong that it is not perturbed by the plasma 

convection. Therefore, the toroidal field strength is simply 

 BT (r,! ) =
BTD

1+ r
RD
cos!

,       (1) 

where BTD is the toroidal magnetic field at r=0. The poloidal flux function for the 

standard, the snowflake, and the cloverleaf divertor is written as 

 ,      (2) 

with n=1 for the standard null, n=2 for the snowflake, and n=3 for the cloverleaf. The 

parameter Bpm is the poloidal field strength at the separatrix at the midplane and a is the 

!(r,! )

!(n) =
Kn

n+1
Bpm

an
rn+1 sin(n+1)!
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minor radius. The dimensionless coefficient Kn is of order unity and depends on the 

global configuration.  This parameter has been evaluated for specific configurations of 

standard and snowflake divertors in Ref. 16 and for a cloverleaf divertor in Ref. 17. The 

magnitude of Kn corresponding to the standard and the snowflake divertors are defined by 

Eqs. 10, 18, 19, and 23 and Table 1 of Ref. 16. They are: K1=0.73 and K2=0.57  for a 

“reference” geometry described in Ref. 16. For the cloverleaf divertor, we choose the 

configuration corresponding to the fourth line of Table 1 of Ref. 17 (it provides the 

largest distance from the PF coils to the null among all configurations considered in Ref. 

17), yielding K3=7.5. Note that the notation in Refs. 16-17 is different from that used in 

the present paper.  

 Although our general results cover all three of these divertors, in the specific 

examples we focus on the snowflake divertor. 

 3. The mode structure 

 A Lagrangian description is used where the initial position of the fluid element in 

the poloidal plane is characterized by the angle  with respect to the axis x, and the 

radius r0.  Each fluid element stays on the circle of the initial radius r0 but moves along 

the circle by some angle, which depends on both r0 and , Fig. 2.  In other words, the 

new position of the fluid element is related to the initial one by the following equations: 

           (3)

  .       (4) 

The term  corresponds to a uniform rotation at a given radius. As the azimuthal 

distance between two neighboring points would not change in such a displacement, it 

would cause a perturbation to the toroidal field, which is unacceptable. The last term in 

!0

!0

r = r0

! =!0 + " (r0 )+!" (r0,!0 )

! (r0 )
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Eq. (4) has to be adjusted in such a way that the toroidal magnetic field in the new 

location be equal to the pre-existing toroidal field in this location. From the flux 

conservation constraint, one finds:  

 .       (5) 

Using Eqs. (1) and (5) and the smallness of r/R, one finds: 

 !! (r0,!0 ) =
r0
RD

sin!0 " sin !0 + " (r0 )( )#$ %&     (6) 

Note that this derivation does not assume a small displacement: the angle χ0 is not 

assumed to be small compared to unity. 

 The mode has differential rotation where the fluid elements are displaced along 

circles, with the rotation angle varying along the radius and weakly varying along the 

azimuth ( ). Equations (3), (4) and (6) serve as a basis for analysis of the change 

in a plasma thermal energy and magnetic energy caused by the churning mode 

 
 
Fig. 2 Towards description of the churning mode. An annulus of a thickness dr is shown. 
Inside this annulus each point with the initial polar angle turns by some angle around the 
axis. The turn depends on the radius of the annulus, i.e., the twist is sheared.  
 

 

BT (! )d! = BT (!0 )d!0

!! << !
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 4. Thermal energy release 

 The initial, unperturbed volume of a certain toroidal flux tube is 

, whereas its volume at the new location is .  As the 

quantities dϕ and dϕ0  are related by Eq. (5), one finds that  

  V
V0

=
R2

R0
2 =

2r0
RD

sin!0 ! sin !0 + " (r0 )( )"# $% ,     (7) 

where only zeroth- and first-order terms in the parameter r0/R are retained. One can see 

that the relative change of the volume of the flux-tube contains a small parameter r0/R, 

and accordingly, the change of the thermal energy for a toroidal annulus of a radius r0 and 

a thickness Δr for a given χ(r0) is: 

 .   (8) 

This quantity is the energy of the annulus per unit length in the toroidal direction. We 

assume that the plasma behaves thermodynamically as an ideal monatomic gas. 

 The dependence of the churn angle χ on radius r will be used to evaluate the net 

energy available (thermal energy release minus the energy spent perturbing the poloidal 

magnetic field) to drive the convective motion in the PF null area. 

 Consider the particular case where the pressure is a linear function of the vertical 

coordinate y, with higher values of the pressure at larger y (closer to the confinement 

region) and lower values in the area where the plasma start flowing towards divertor 

targets along the divertor legs. In other words, assume that   

 ,       (9) 

V0 = 2!R0r0dr0d"0 V = 2!Rr0dr0d"

!WT =
4
3
r0
2dr0
R0

p(r0,!0 ) cos!0 " cos(!0 + " (r0 ))[ ]
0

2!

# d"0

p(r,!0 ) = const + !p rsin!0
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where the pressure gradient is assumed constant. The first term does not contribute to the 

energy release (8), whereas the second one does. One easily finds from Eq. (8) that

  .       (10) 

In order to have thermal energy release (Δ!! < 0), the plasma should turn clockwise, 

χ<0 (using the standard convention that the geometrical axis is situated to the left of the 

poloidal cross-section as shown in Fig. 1). Note that by using Eq. (9) we have abandoned 

an assumption of p being a function of the flux surface that is usually used in the 

equilibria analyses based on Grad-Shafranov equations (see, e.g., Ref. 1). The assumption 

encapsulated in Eq. (10) may be more relevant to the problem of convective heat 

transport, with the value of p’ being a control parameter that determines the intensity of 

the convective motion required to sustain a certain heat flux. We, however, are not 

attempting to solve a complete self-consistent problem and consider p’ just as a given 

input parameter. 

 Qualitatively, the energy release is associated with the change of the volume of 

the toroidal flux tube as it moves to a larger major radius where the field is lower and the 

toroidal length is larger, leading to the release of thermal energy via adiabatic expansion. 

Note that the derivative  at χ=0 is non-zero for , 

indicating the absence of equilibrium in this initial state.  

 5. Magnetic energy perturbation 

 Consider now the (stabilizing) magnetic energy perturbation. Here we neglect the 

small terms of order of r/R because the magnetic field perturbation occurs already in the 

zeroth order in this parameter. For 2D motion in the (r, ϕ) plane, the flux function is 

!WT =
!r3!r
R

4 "p
3
sin " (r0 )

!"WT /!!( )!=0 = # 4"r
3"r / 3R( ) $p !p " 0
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advected by the fluid; for every parcel of the fluid, the value of the flux function remains 

equal to its initial value: 

 .    (11) 

For the churning mode in zeroth order in r/R, one has: 

 .       (12) 

Therefore, 

 .        (13) 

The magnetic energy density is: 

  .      (14) 

Accordingly, the change of the magnetic energy per unit toroidal length and annular 

width Δr is (for r<<R):  

 

           (15) 

 To evaluate the magnetic energy for the three divertor configurations, we use Eq. 

(2). Because the integrand in Eq. (15) is periodic in ϕ, some cancellations occur, and the 

final result acquires the form 

  .    (16) 

This expression can be applied to all three types of divertors, the standard null, the 

snowflake, and the cloverleaf.  A simple integration for !0 as in Eq. (2) yields: 

!(r,! ) =!0 (r0,!0 ); r = r(r0,!0 );! =!(r0,!0 )

r = r0; ! =!0 + " (r0 )

! =!0 r,! " " (r)[ ]

wM =
1
8!

!"
!r

#

$
%

&

'
(
2

+
1
r2

!"
!!

#

$
%

&

'
(

2)

*
+
+

,

-
.
.

!WM =
r!r
8!

"#0 (r," $ # (r))
"r

$
d#
dr

"#0 (r," $ # (r))
""

%

&
'

(

)
*

2

+
1
r2

"#0 (r," $ # (r))
""

%

&
'

(

)
*

2

$
"#0 (r," )

"r
%

&
'

(

)
*
2

$
1
r2

"#0 (r," )
""

%

&
'

(

)
*

2+

,
-
-

.

/
0
00

2!

1 d"

!WM =
r!r
8!

d"
dr

"

#
$

%

&
'
2

()0 (r,# * " (r))
(#

+

,
-

.

/
0

2

0

2!

1 d#
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 .      (17) 

 6. The size of the convection zone 

 To get a rough idea of the radius d of the zone encompassed by the churning 

mode and the temporal characteristics of the mode, we explore a specific type of 

differential rotation, 

         (18) 

The parameter d describes the size of the convection zone: the rotation must gradually 

vanish at larger radii due to a rapid growth of the magnetic energy perturbation. The 

parameter χ0 characterizes the degree of rotation near the axis. In the initial state, before 

the motion starts, the rotation is zero. Substituting Eq. (18) into Eqs. (10) and (17), 

summing, and integrating over the radius, one finds the energy available for driving the 

churning mode: 

 

.         (19) 

A positive sign for W indicates that the thermal energy release overweighs the magnetic 

energy increase, and the mode can be excited. This requires !0 < 0 , i.e., a clockwise 

rotation. 

 In the first integral in Eq. (19), integration is elementary, yielding 

 .      (20)  

 The second integral can be written as 

!WM =
!r2n+3!r
a2n

d"
dr

"

#
$

%

&
'
2 Kn

2Bpm
2

8!

! = !!0 exp(!r
2 / d 2 )

W = ! "WM +"WT( )
0

#

$ dr =

!
!KN

2

a2n
BPM
2

8!
r2n+3

0

#

$ %"
%r
&

'
(

)

*
+
2

dr ! !
R
4 ,p
3

r3
0

#

$ sin "dr

r2n+3
0

!

" #!
#r
$

%
&

'

(
)
2

dr = !0
2d 2n+2 (n+ 2)!
2n+2
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 .       (21) 

where the function F( ) is  

 .       (22) 

The plot of this function is shown in Fig. 3. 

 

 
χ0 

 
Fig. 3 The functions F(χ0) (solid line) and F(χ0)/χ0

2
 (dashed line) that enter Eqs. (21) and 

(24); χ0 is measured in radians. 
  

 As the derivative of the thermal drive at χ0=0 is non-zero, the initially resting 

plasma starts clockwise rotation. The kinetic energy for the mode (18) is: 

     (23) 

(per unit length in the toroidal direction). We assume here a uniform density distribution. 

The rotation amplitude  initially grows, but then the magnetic energy becomes 

comparable to the thermal energy, and rotation stops at some |χ0|= χ*. After reaching this 

point, the rotation reverses sign, the plasma returns to the initial state of χ0=0, etc. A 

r3
0

!

" sin !dr = d 4F(!0 )

!0

F(!0 ) = x3 sin
0

!

" !0e
#x2( )dx

Wkin = !" r3
0

!

" !! 2dr = !" !#0
2 r3e#2r

2 /d2

0

!

" dr = !
8
" !#0

2d 4

| !0 |
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shape of the potential well in which these oscillations occur is illustrated by Fig. 4a for 

the case where |χ*|=π. The dynamics of this process can be found from equation Wkin=W 

(see Section 7). The maximum rotation angle is determined from the condition W(χ*)=0. 

A large-enough maximum rotation angle provides a mechanism for heat exchange by 

mixing the hotter and colder plasmas.    
   

a)    b)
 

  
                          
Fig. 4 Dynamics of the system: a) Potential energy dependence on -χ0 (in radians). The 
energy is normalized to make its minimum equal to -1. The system starts at a zero 
velocity at χ0 =0 and oscillates between two turning points; b) Rotation angle in the units 
of π vs. time (normalized to the period τ). 
 

 One can visualize the evolution of the poloidal magnetic field by following the 

flux surfaces that formed a hexagonal separatrix in the initial state; this is illustrated by 

Fig. 5. The perturbation of the poloidal magnetic field is of order of the initial field. For 

panels c and d in Fig. 5, the plasma mix is quite substantial.  

 Let’s find the conditions under which the maximum turn angle is |χ*|=π, i.e., by 

requiring that W in Eq. (19) is zero for !0 = " . This condition means that the mode can 

turn the plasma in the convection zone “upside down”, bringing the hottest part (initially 
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at the top) to the bottom, which is in contact with the plasma exhaust channels and 

activating additional channels in the cases of a cloverleaf and a snowflake.  

        a)            b) 

        
 

         c)            d)     

          
 

Fig. 5 Evolution of the separatrix entrained by the churning mode. The coordinates are 
normalized to d, with the circle having a radius of the unity. Black straight lines indicate 
six branches of the unperturbed  snowflake separatrix. The upper left panel corresponds 
to initial state, upper right panel, to χ0=π/2, the lower left panel corresponds to our 
reference case of the upside-down turn, and the lower right panel corresponds to a 
stronger drive, where a full 2π turn becomes possible. The cross-field transport is greatly 
facilitated for the lower panels.  
 
 For χ∗=π, the required condition acquires the form: 

 d
a
= !p

a
R

!

"
#

$

%
&

1
2n'1 2n+4F("*)

3Kn
2" *2 (n+ 2)!

!

"
#

$

%
&

1
2n'1
, "*= # .    (24) 

We have introduced a parameter  
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         (25) 

that characterizes the plasma pressure in the convection zone relative to the poloidal field 

pressure at the midplane SOL. As the pressure drop across the SOL is of order of the 

pressure, we assume  for numerical estimates. Using the numerical values of 

the coefficients, we find 

  d
a
= 0.44!p

a
R

         (26) 

for a standard divertor, 

 d
a
= 0.71 !p

a
R

!

"
#

$

%
&

1
3

        (27) 

for a snowflake divertor, and 

 d
a
= 0.24 !p

a
R

!

"
#

$

%
&

1
5

        (28) 

for a cloverleaf divertor. As the parameter βp(a/R) is usually small (see Table 1), the 

convection zone size is significantly larger for the snowflake and the cloverleaf divertors 

than for the standard one. Typically, for the standard divertor, the ratio of d/a evaluated 

from Eq. (26) is on the order of 1/200 – 1/300. Any significant changes of the equilibrium 

in the divertor area of the standard divertor and even more so the hypothesized onset of 

the churning motion would require unrealistically high plasma pressures near the edge. 

Not surprisingly, no twisting of the field lines of the type illustrated in Fig. 5 shows up in 

the available analyses of the plasma equilibria (see Ref. 18 and references therein).  

 Conversely, for the snowflake divertor the ratio d/a is of the order of (1/10-1/5)a 

and should have a much stronger impact. For the cloverleaf, the “churning” zone is 

!p =
8" | !p | d
Bpm
2

| !p | d ~ p



 17 

approximately the same, due to the small numerical coefficient in Eq. (28). In the next 

sections we will focus therefore on the snowflake (n=2).  

 An important issue is that of the size of the convective zone as projected along the 

poloidal field flux surfaces to the midplane. Outside the convective zone these surfaces 

stay unperturbed and are therefore well defined. In the snowflake geometry, the flux 

surface whose shortest distance to the null is d, the magnetic flux is (see Eq. (2) and Ref. 

[16])  per unit length in the toroidal direction. For χ*=π this 

corresponds to the midplane width  

  !
a
= 0.19 d

a
"

#
$

%

&
'
3

( 0.07!pm
a
R

       (29) 

of the zone affected by the convection both inside and outside the separatrix. [We neglect 

here the difference of the major radii between the poloidal field null and the midplane 

SOL.]   

 7. Mode dynamics 

 To find the period of this mode, one can use the energy conservation equation, 

W=Wkin, that allows one to relate and , as in the standard theory of a non-linear 

oscillator. Then, the temporal dependence of  can be found by an integration of 

 over . The plot of vs. time is shown in Fig. 4b. The period of 

oscillations for the snowflake divertor is  

 ! =
1.3 Rd
2T /mi

         (30) 

!d = 0.19a(d / a)
3Bpm

!!0 !0

!0

dt = d!0 / !!0 !0 !0
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For larger plasma pressures, larger amplitude of oscillations becomes possible,  reaching 

2π and even higher values. Heat transport holds the gradient down, providing a self-

regulating mechanism (which we do not analyze in this paper).  

 It is instructive to compare the churn time (30) with the diffusion time 

corresponding to the Bohm diffusion coefficient:  

  .        (31) 

where  (or, numerically, . Taking, 

as an example, T=50 eV, B=2 T, d=10 cm, one finds τB~6⋅10-3 s, whereas the “churn” 

time (30) is ~ 10-5 s, i.e., much shorter. 

 Another important parameter that is related to the effect of the mode on divertor 

performance, is the transit time of the plasma in its flow along field lines to the divertor 

targets. In order for convection to be effective in spreading the heat, the period τ, Eq. (30) 

should be shorter than the transit time ! ||d through the divertor region. For the latter we 

take the transit time for the field lines that just skirt the convective zone passing at a 

minimum distance d from the null. As the end-points we take the points that corresponds 

to the field strength that is 2 times higher than the field at the point of the closest 

approach (Fig. 6). Simple calculations show that this connection length is (see Ref. 16) 

 ! ||d = 0.7
a2

d
BT
Bpm

.        (32) 

For the reference parameters of Table 1, this is 10-4 s, i.e., much longer than the time τ. 

This disparity would become even stronger for the field line that passed closer to the null 

in the unperturbed state. In other words, the plasma flow is indeed strongly mixed near 

! B ~
d 2

2DB

DB = (1 /16)(cT / eBT ) DB (cm
2 / s) ! 600T (eV ) / B(T )
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the null before passing further to the divertor legs.  Parallel heat conduction may also 

contribute to the heat flux. For our reference parameters  the effect of the convective zone 

on this component of the flux is equally strong.   

 To evaluate the applicability of the frozen-in condition that we have been using in 

the analysis of the magnetic field perturbations, we calculate the magnetic Reynolds 

number, the ratio of the magnetic diffusion time to the oscillation period τ: 

 ReM =
d 2

2DM!
         (33) 

The magnetic diffusivity can be evaluated as . Taking 

the plasma temperature to be 50 eV and d=10 cm, we find that ReM~600. This means that 

the line-tying holds with high accuracy. 

 The field structures shown in Fig. 5c are usually prone to reconnection, but the 

field strength of the poloidal field is small, with magnetic pressure being much smaller 

than the plasma pressure in the convection zone. The assessment of reconnection in this 

peculiar situation would require a separate analysis. 

 One cannot rule out that after a few bounces the churning mode will settle down 

at the equilibrium that looks like the structure shown in Fig. 5c or similar. This scenario, 

however, seems to be rather improbable due to the complexity of the field structure prone 

to reconnections and smaller-scale instabilities in a medium with a steep variation of the 

plasma parameters. On the other hand, in the transition zones with distance from the null 

somewhat higher than d, slightly twisted equilibria similar to those shown in Fig. 5a may 

be possible. 

 

DM (cm
2 / s) ~ 4 !106 / Te(eV )[ ]3/2
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8. Discussion 

 In the previous sections a semi-quantitative analysis of the plasma dynamics in 

the zone near the poloidal field null has been presented. The characteristic size of the 

zone where this mode can emerge has been estimated. It turned out that for the standard 

divertor it is very small, a fraction of a centimeter for  parameters typical of existing 

fusion facilities. Conversely, for the snowflake and cloverleaf configurations the size of 

the zone can be significant. The further discussion will focus on the snowflake divertor 

because it has already been realized on several tokamaks [10-14].  

 The predicted size of the convection zone for these facilities is typically on the 

order of 1/10 of the plasma minor radius for the inter-ELM plasmas. The convection 

diverts part of the heat flux into the two divertor legs that initially are not in contact with 

the SOL plasma. This feature has been particularly clearly demonstrated in the TCV 

experiments [11, 14].  

 
Table 2. Derived parameters for the “generic” tokamak of Table 1 

 
 

Parameter 
 

 
Plasma 

beta 

 
Size of 

convection 
zone  

 
Turn-over 

time 

 
Bohm 
time 

 
Parallel 
transit 
time 

 
Magnetic 
diffusion 

time 
Notation 
and Eq. 
number 

 
βpm,  

Eq. (25) 

 
d,  

Eq. (27) 

 
τ 

Eq. (30) 

 
τB 

Eq. (31) 

 
τ/||d 

Eq.(32) 

 
τm 

Eq.(33) 
 

Value 
 

 
6⋅10-3 

 
10 cm 

 
7 µs 

 
3 ms 

 
0.3 ms 

 

 
4ms 

 

 The churning mode, by its very nature, involves not only a SOL and initial private 

flux region, but also the bottom of the confinement zone (see Fig. 1). However, the 

poloidal magnetic flux threading this zone is approximately the same as the flux 
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threading the SOL and, when projected to the midplane, corresponds to the distance from 

the separatrix of only a few millimeters. In terms of the core plasma confinement, this is 

like shifting the separatrix inward by this distance and, thereby, losing a few percent of 

the plasma volume. The effect can be described as the effect of inserting a smooth, 

distributed limiter inside the separatrix. Experimentally, there have been no observations 

indicating any deterioration of the core plasma confinement in the presence of the heat 

flux splitting between several divertor legs [10-14].  

 In our discussion, we considered an exact snowflake configuration, whereas in 

real experiments one usually deals with an “approximate” snowflake, where instead of 

one second-order null one deals with two closely spaced first-order nulls. Our description 

will still be applicable to this latter situation if the distance between the nulls is smaller 

than the size of the convection zone evaluated from Eq.(27). This is one of the “proximity 

constraints” that  make an approximate snowflake act similarly to the exact one [4].  

 The convection should become particularly strong during the ELM events when 

the plasma pressure in the SOL increases by a factor of 10 to 30 compared to the inter-

ELM periods [19]. The higher pressure increases the size of the zone and provides 

conditions for a strong heat flux between the divertor legs. This was observed on TCV, 

NSTX and DIII-D [10-14]. A detailed experimental study has been performed on TCV 

[14]. 

 Other mechanisms that may lead to enhanced heat transport in the null area are 

hydrodynamic instabilities with the cross-field scale much smaller than d studied in Ref. 

6, 7 and the electric drifts caused by the ambipolar electric field.   



 22 

 Among the MHD instabilities [6, 7] the most efficient one is a toroidally-

symmetric quasi-flute mode [6] that develops on the background of the initial 

equilibrium. It favors those parts of the initial equilibrium configuration where the 

unperturbed pressure gradient is directed towards the geometrical axis. The instability 

conditions analyzed in Ref. 6 can be satisfied in some areas of all three experimental 

facilities (TCV, NSTX and DIII-D). The ballooning mode may also play some role, 

especially during the ELM events [7].   

 The effect of electric drift has been first analyzed for the standard divertor [8]. It 

may produce a convection pattern similar to that of the churning mode, although it is 

purely electrostatic and does not perturb the magnetic field. For the snowflake geometry a 

similar mechanism was assessed in [9]. The convection velocity produced by the 

ambipolar field is typically smaller than that produced by the churning mode. On the 

other hand, it can act at low plasma pressures, when the churning mode is inefficient. 

 In reality, one will probably have an interplay of all the mechanisms mentioned 

above. To reach a better understanding of the MHD effects, numerical simulations of the 

type that can be performed by the NIMROD code [20] would be desirable. With regard to 

the churning mode, effects of magnetic reconnection on the well-developed convection 

would be important to assess.  

 In summary: A semi-quantitative analysis of a churning mode in the area of a 

weak poloidal magnetic field near the second-order null has been presented. The mode 

generates a poloidal rotation of plasma that flips the plasma distribution upside-down and 

brings the warmer plasma directly to the private flux area, thereby activating additional 

divertor legs.  



 23 

Acknowledgment 

This work was performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory, 

under Contract  DE-AC52-07NA27344. 

  



 24 

References 
 
1. V. D. Shafranov, Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants 

Bureau, New York, 1966), Vol. 2, p. 103. 
 
2. D.D. Ryutov and T.D. Rognlien, “Using the snowflake geometry to mitigate pulsed 

divertor heat loads during the ELM events” Paper 3O3 at the Int. Sherwood Fusion 
Theory Conference, Austin, TX, May 2-4, 2011. 

 
3. D. D. Ryutov, R.H. Cohen , T.D. Rognlien and M. V. Umansky. “Plasma convection 

near the magnetic null of a snowflake divertor  during an ELM event.” Contrib. 
Plasma Phys., 52, No. 5-6, 539 – 543, 2012. 

 
4. D. D. Ryutov, R.H. Cohen, T.D. Rognlien and M. V. Umansky. “A snowflake divertor: 

solving a power exhaust problem for tokamaks.” PPCF, 54, 124050, 2012. 
 
5. D.D. Ryutov, R.H. Cohen, E. Kolemen, L. LoDestro, M. Makowski, J. Menard, T.D. 

Rognlien, V.A. Soukhanovskii, M.V. Umansky, X. Xu. Theory and Simulations of 
ELM Control with a Snowflake Divertor. TH/P4-18 

 
6. W.A. Farmer, D.D. Ryutov. “Axisymmetric curvature-driven instability in a model 

divertor geometry.” Phys. Plasmas, 20, 092117, September 2013. 
 
7. W.A. Farmer. “Ballooning modes localized near the null point of a divertor.” Subnitted 

to Phys. Plasmas, January 2014. 
 
8. M.J. Schaffer, J.A. Boedo, R.A. Moyer, T.N. Carlstrom, J.G. Watkins. “Large EXB 

convection near the divertor X-point.” JNM, 290-293, 530 (2001). 
 
9. G.P.Canal et al.”Comparison between experimentsand EMC-3-Eirene simulationsof 

the snowflake divertor in TCV. BAPS, 58, #16, p. 256. 
 
10. V. A. Soukhanovskii, J.-W. Ahn, R. E. Bell, D. A. Gates, S. Gerhardt, R. Kaita, E. 

Kolemen, B. P. LeBlanc, R.Maingi, M. Makowski, R. Maqueda, A.G.  McLean, J. E. 
Menard, D.  Mueller, S. F. Paul, R. Raman, A. L. Roquemore, D. D. Ryutov, S.A. 
Sabbagh, H. A. Scott. “Taming the plasma-material interface with the ‘snowflake’ 
divertor in NSTX,” Nucl. Fus., 51, 012001 (January 2011). 

 
11. W.A.J. Vijvers, G.P. Canal, B. Labit, H. Reimerdes, B. Tal, S. Coda, B.P. Duval, T. 

Morgan, G. de Temmerman, J.J. Zielinski and the TCV team. “Reduction of Peak 
Wall Power Loads in L- and H-mode Tokamak Plasmas in TCV with the Snowake 
Divertor.” Paper EX/P5-22 at 2012 IAEA Fusion Energy Conference, San-Diego, 
October 8-12, 2012 

 http://www-naweb.iaea.org/napc/physics/FEC/FEC2012/papers/490_EXP522.pdf 
 
 



 25 

12. S. L. Allen, V. A. Soukhanovskii, T.H. Osborne, E. Kolemen, J. Boedo, N. Brooks, 
M. Fenstermacher, R. Groebner, D. N. Hill, A. Hyatt, C. Lasnier, A. Leonard, M. 
Makowski, W.H. Meyer, A. McLean, T. Petrie, D. Ryutov, J. Watkins. “Results From 
Initial Snowflake Divertor Physics Studies on DIII-D,” Paper PD/1-2, IAEA Fusion 
Energy Conference, San Diego, CA October 8-12, 2012.  

 
13. H Reimerdes, G P Canal, B P Duval, B Labit, T Lunt, W A J Vijvers, S Coda, G De 

Temmerman, T W Morgan, F Nespoli, B Taland the TCV Team. “Power distribution 
in the snowflake divertor in TCV.” Plasma Phys. Control. Fusion 55 (2013) 124027 

 
14. W A J Vijvers, Gustavo P Canal, Benoit Labit, Holger Reimerdes, Balasz Tal, 

Stefano Coda, Gregory De Temmerman, Basil P Duval, T W Morgan, Jakub Jedrzej 
Zielinski and the TCV team. “Power exhaust in the snowflake divertor for L- and H-
mode TCV tokamak plasmas.” Nuclear Fusion, 54, February 2014. 

 
15. Tilmann Lunt, Gustavo P Canal, Yuhe Feng, Holger Reimerdes, Basil P Duval, 

Benoit Labit, W A J Vijvers, David P Coster, Karl Lackner and Marco Wischmeier. 
“First Edge Monte Carlo 3D-Eirene simulations of the TCV snowflake divertor.” 
PPCF, 56, March 2014. 

 
16. D.D. Ryutov, R.H. Cohen, T.D. Rognlien, M.V. Umansky. “Magnetic field structure 

of a snowflake divertor.” Phys. Plasmas, 15, 092501 (2008). 
 
17. D.D. Ryutov, M.V. Umansky. “Divertor with a third-order null of the poloidal field.” 

Phys. Plasmas, 20, 092509 (2013).  
 
18. A. J. Cerfon and J. P. Freidberg “’One size fits all’ analytic solutions to the Grad–

Shafranov equation”, Phys. Plasmas, 17, 032502, 2010. 
 
19. D.N. Hill. “A review of ELMs in divertor tokamaks. ”Journ. Nucl. Materials, 241, 

182, 1997. 
 
20. C.R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel, S. E. 

Kruger, D. D. Schnack, S. J. Plimpton, A. Tarditi, M. S. Chu, and the NIMROD 
Team, “Nonlinear magnetohydrodynamics simulation using high-order finite 
elements,” J. Comput. Phys., 195, 355 (2004) 

 
  


